Student Honor Pledge:

All work submitted is completed by me directly without the use of any unauthorized resources or assistance	Midterm	Evan
the use of any unauthorized resources or assistance	rmultim	LAUI
T 4.4 1		

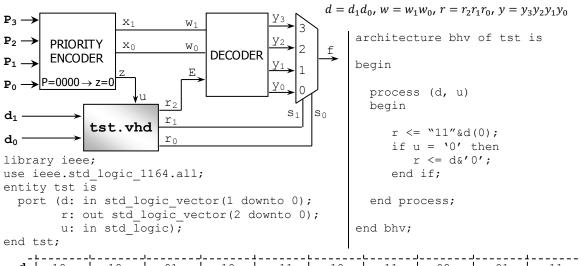
Initials: _____ (February 16th @ 5:30 pm)

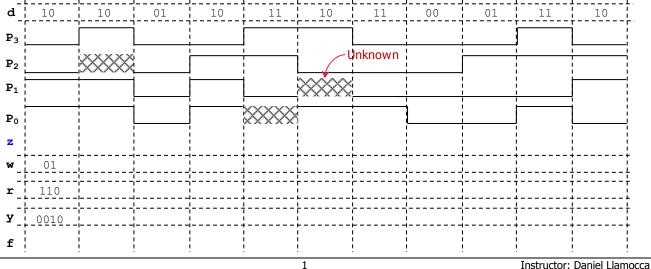
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (24 PTS)

a) Complete the following table. The decimal numbers are unsigned: (5 pts.)

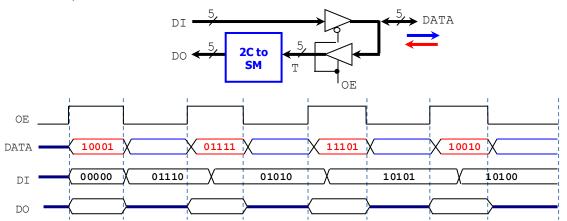
Decimal	BCD	Binary	Reflective Gray Code
31			
			110001
	001001000111		


b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (15 pts.)


	REPRESENTATION				
Decimal	Sign-and-magnitude	1's complement	2's complement		
			10110		
		10000			
			01101		
	11011				
-31					
		100110			

c) Convert the following decimal numbers to their 2's complement representations. (4 pts) \checkmark -31.5

PROBLEM 2 (18 PTS)


Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.

PROBLEM 3 (12 PTS)

- Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box treats the input T as a 5-bit signed (2C) number and converts it to the sign-and-magnitude representation with 5 bits.
 - ✓ Example: if T = 10110, then DO = 11010.

PROBLEM 4 (11 PTS)

- A microprocessor has a memory space of 512 KB. Each memory address occupies one byte.
 - a) What is the address bus size (number of bits of the address) of this microprocessor?
 - b) What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor?
 - c) The figure to the right shows four memory chips that are placed in the given positions:
 ✓ Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips.

Address	8 bits
0x0x	0 128KB
0x0 0x	1 128KB
0x 0x	2 128KB
0x 0x	3 128KB

PROBLEM 5 (18 PTS)

- a) Perform the binary unsigned subtraction of these unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every borrow from b_0 to b_n . Determine whether we need to keep borrowing from a higher byte. (6 pts) \checkmark 31 37
- b) Perform the binary operation of these numbers, where numbers are represented in 2's complement. Indicate every carry from c_0 to c_n . Use the fewest number of bits to represent the summands and the result so that overflow is avoided. (8 pts)
- c) Perform binary multiplication of the following numbers that are represented in 2's complement arithmetic. (4 pts)

PROBLEM 6 (17 PTS)

- A 3-input majority gate has an output value f that is 1 if there are more 1's than 0's on its inputs. The output f is 0 otherwise.
 - a) Provide the simplified expression for f and sketch this circuit using logic gates. (5 pts)
 - b) Implement the previous circuit using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (12 pts)

Instructor: Daniel Llamocca

3

4

Instructor: Daniel Llamocca

5